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Abstract: In this paper, we establish some new Gronwall-Bellman-type dynamic inequalities in two inde-
pendent variables containing integration on infinite intervals on time scales, which can be used as a handy
tool in the boundedness analysis for solutions to some certain dynamic equations containing integration
on infinite intervals on time scales. The presented inequalities are of new forms so far in the literature to

our best knowledge.
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1 Introduction

As is known to us, in the qualitative as well
as quantitative analysis for solutions of differen-
tial equations, difference equations and dynamic
equations on time scales, the Gronwall-Bellman
inequality [1,2] play an important role as it pro-
vides explicit bounds for the unknown functions
concerned. During the past few decades, various
generalizations of the Gronwall-Bellman inequal-
ity have been developed (see [3-27] and the refer-
ences therein). But we notice that in the analysis
of boundedness for the solutions for some certain
dynamic equations containing integration on infi-
nite intervals on time scales, for example,

(P, y) ) =

_FGWWWWLLMLMW@WW@WM¥AO,

or

W) =C+ [ [ Rt

y
/t / Wi (€, n,u(€, n)) AEAn)AsAt

o] oo
+/ / F2(87t7u(87t)7
N M

/t / Wa(&,m, u(€,m))AEAN) AsAt,

it is inadequate to obtain the bounds for their
solutions by use of the existing results in the lit-
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erature. So it is necessary to seek new approach
to fulfil such analysis for them.

The aim of this paper is to establish some
new Gronwall-Bellman type dynamic inequalities
in two independent variables containing integra-
tion on infinite intervals on time scales, based on
which some new bounds for the solutions for the
two equations mentioned above are derived.

Throughout the paper, R denotes the set of
real numbers and Ry = [0,00). T denotes an
arbitrary time scale. Ty = [zg,00)(|T, Ty =
[y0,00) (T, where zg, yo € T. On T we define the
forward and backward jump operators o € (T, T)
and p € (T, T) such that o(t) = inf{s € T, s > t},
p(t) = sup{s € T,s < t}. The graininess u €
(T,R;) is defined by u(t) = o(t) — t.

Definition 1 A function f € (T,R) is called
rd-continuous if it is continuous in right-dense
points and if the left-sided limits exist in left-dense
points, while f is called regressive if 1+ u(t) f(t) #
0. C,q denotes the set of rd-continuous func-
tions, while R denotes the set of all regressive
and rd-continuous functions, and R™ = {f|f €

R, 1+ u(t)f(t) >0, vVt € T}.

Definition 2 The cylinder transformation &, is

defined by
Log(1+hz) . 1
§h(2)={ Zih ) ;;Zig(forz# h):

where Log is the principal logarithm function.
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Definition 3 For p(x,y) € R with respect to y,
the exponential function is defined by

ey, 5) = exp( / "6 iy (pl, 7)) AT)

for s,y e T.

Theorem 4 [28, Theorem1.12]: If p(x,y) € R
with respect to y, then the following conclusions
hold

(i) ep(y,y) =1, and eo(s,y) = 1,

(it) ep(s,o(y)) = (1 + pu(y)p(z, y))ep(s,y),

(i) If p € KT with respect to y, then
ep(s,y) >0 forVs, yeT,

() If p € R with respect to y, then Sp €
R,

(1) epls,) =

where (Op)(z,y) = —

m = e@p(y, 3),
p(z,y)

L+ u(y)p(z,y)

Theorem 5 [28, Theorem1.13]: If p(x,y) € R
with respect to y, yo € T is a fired number, then
the exponential function e,(y, yo) is the unique so-
lution of the following initial value problem

{ 25 (2, y) = plx, y)2(z,y),

Z(%ZUO) =1

2 Main Results

Lemma 6 Assume that u(zx,.), a(zx,.), b(x,.),
m(z,.) € Cra(To,Ry) with respect to y, m(z,y)
= —m(w y)b(x,y) and m(x,.) € Ry with respect

toy. Then for any fixed x € Ty,

u(z,y) < ale,y) + ba.y) [ mz, Hulz, DAL,
y € To
(1)
implies
u(z,y) < a(r,y)
+0(z,y) [, em(y, o(t))m
(2)
Proof: Denote v(x,y) = fyoo m(x, t)u(x,t)At.
Then

u(@,y) < alz,y) +b(z, y)v(z,y),

and
(z,y) =

m(fﬂ)(
m(x,y)v(w

m(z,y)u(z,y)
) ($7 y) - m(:n, y)a(:L‘, y)
m(z,y)a(z,y).

|| 'V@%

y)
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Since m € R, then from Theorem 4(iv) we have
om € KT, and furthermore from Theorem 4(iii)

we obtain eq(y, ) > 0 for Va € 'ﬁo.
Moreover,

[v(@, y)eam (y, @)l
= [eam(y, )]y v(z,

On the other hand, from Theorem 5 we have

y) + eom(a(y), a)vy(z,y).

(4)

A combination of (3), (4) and Theorem 4 yields

[v(z, y)eam(y, a))5 =
(em)(z,y)ecm(y, v)v(z, y)
+eam(o(y), a)vy (z,y)
= ecm(o(y), @)X
[1+L( )(@(3; )v(x,y)JrvyA(x,y)]
_e@m( ( ) [ _ﬁl(xvy)v(xay)lf))

Substituting y with ¢, and an integration for (5)
with respect to ¢ from « to oo yields

[eeﬁ(yv Ck)]ﬁ - (@ﬁl)(.’l?, y>e@n~’b(y7 Oé).

\_/@
—~| =

T,y
(z,y)

Qﬁl>

v(x,00)eqm (00, ) — v(x, a)eqm (a, ar)
t)]At.

= [." com(o(t), @)vy (x,1) — m(z, t)v(z,
(6)

Considering v(z,00) = 0, egm(a,a) = 1, from
(1) and (6) we have

—v(x,oz) > _f(jo e@m(a(t),oz)m(x,t)a(x,t)At
= — [ em(o, o(t))m(z, t)a(z, t)At,
which is followed by
o(z,0) < / e (a, o (8))m(z, a(z, )AL (7)
Since a € TNTO is arbitrary, after substituting «

with y we obtain the desired inequality.

Lemma 7 Under the conditions of Lemma 6,
furthermore, assume a(x,y) is nonincreasing in
y for every fized x, b(x,y) = 1. Then we have

’LL(:E7 y) < a(m, y)e—m(yv OO)

Proof: Since b(z,y) = 1, and a(zx,y) is nonin-
creasing on Ty with respect to y, then m = —m,
and

u(z,y) < alx,y +f e—m(y,o(t))a(z, t)ym(z, t)At
< a(z,y)[1+ [7 e—m(y, o(t))m(z, t)At].
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From [29, Theorem 2.39 and 2.36 (i)], we have

fyoo e—m(y,o(y))m(z, t)At
= lim [2 ey, a(t))(=m(z,

= lim e—m(y75) - e—m(y7y) = e—m(y7 OO) - 17

E—0OO

1) At

Combining the above information we can obtain
the desired inequality. O

Lemma 8 [30] Assume that a > 0,p > q > 0,
and p # 0, then for any K > 0,

a% < QK%CL—FMK%.
p p
Theorem 9 Supposeu, f, g, h, a, b € Cprq(Tox

1~I'0,R+), and a, b are nonincreasing. p, q, v, m
are constants, andp>q>0, p>r>0p>m >
0, p#£0. If for (z,y) € To x Ty, u(x,y) satisfies
the following inequality:
uP(x, y) < a(x, y) + b(z,y)x
o0 oo
[f(s tud(s, t)+g(s, t)u’ (s,
y

+b(z, )

/y / / h(&,n)u™ (€, m) AEANAsAL,

(8)

t)]AsAt

then
u(z,y) < [Bi(z,y) + bz, y)x
ep, (Y, o(t))Ba(z,t) Bi(z,

(z,y) € Ty x Ty, (9)

1
t)At]?,
provided that Ba(x,.) € RT, where

By(z,y) = a(x, y)+b(m y)x
[f(S t)iKp +9(s, t)TKp}AsAt

+ x,y
/ / 7K » AEANASAL,
y

(10)
/ 4

+/y /s ) iy AgAn]As VK >0,
(11)
and

B+ g(s, y) LK

By(x,y) = —b(z,y)Ba(z,y). (12)
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Proof: Denote the right side of (8) by v(x,y).
Then we have

u(z,y) < v (z,y), (r.y) € Tox To.  (13)
Fix X € Ty. Then it follows that

v(X,y) = a(X,y) +b(X,y)
/yoo /Xoo[f(s,t)uq(s,t) + g(s, t)u’ (s, t)|AsAt+
b(X,y) /y S e maganasar
<X +0X) [ [0 + (s,

v (s,1) / / hE v (€, 1) AEAN]AsAL.

(14)
Combining (14) with Lemma 8 we obtain

v(X,y) < a(X,y) +b(X,y)

[ 1 e

b(X, y)/ / 9(s, t)( "R (s, t)+p—

AsAt—i—be//// )

(KT () +
p p
<alX)+X) [ enttK

+g(s,1)E

(s, t) + uK%)ASAH—
b

TK%)

)AfAnAsAt

(e%e] 9] p—m m

—i—/t /S h({,n)ip K» AEAn|AsAt +b
T s 0 Ak e

(X,) / ([ U0t + g0t K

+/ / h(E, n)%K%AgAn}As}v(X, t)At
t s
= BXy) 0y [ BXu(X 8L (15)
Yy
By use of Lemma 6, we obtain

U(X7y) < Bl(X7y) +b(X7y)

| entnonBaxom(x.0ar y e T
y

(16)
Since X € Ty is arbitrary, then in fact (16) holds
for Vx € Ty, that is,

'U(.T,y) < Bl(.f,y) + b(fl,’,y)
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/OO eg, (Y, 0(t))Ba(z,t) Bi(z,t)At, (z,y) € (To x Tp).

Y

(17)
Combining (13), (17) we obtain the desired in-
equality. a

If we apply Lemma 7 instead of Lemma 6 at
the end of the proof of Theorem 9, then we obtain
the following theorem.

Theorem 10 Suppose u, f, g, h, a, p, q, r, m
are defined as in Theorem 2.1. If for (z,y) €

To x To, u(z,y) satisfies the following inequality:

P(ay) < ale,y) + / [t

gl yu” (s, 1)+ / / h(E, ™ (6,m) AL AR AsAL,

then

u(z,y) < [Bi(z,y)e_p,(y,0)]7, (2,y) € ToxTy,

,.) € BT, where

Bi(w) =ae)+ [ [ i tx

+g(s, t);rK%]AsAH

I

By(r,y) = / £ K" 4 g5, LK

provided that —Ba(x

5 AEAnAsAL,

rfp

+/ / h(g,n);K?AgAn]As,VK> 0.
Y s

Theorem 11 Suppose u, f, g, h are defined as
in Theorem 9. If for (x,y) € Ty x Ty, u(x,y)
satisfies the following inequality:

u(ey) < [ " / " F (s tyuls, 1) + (s, uls, 1
Y x

Y AEAN AsAL,
[T [ e nacanas
then u(x,y) = 0.

The proof for Theorem 11 is similar to
Theorem 9, and we omit it here.

Based on Theorem 9, we establish a Gronwall-
Bellman-Volterra-Fredholm type inequality con-
taining integration on infinite intervals on time
scales as follows.

E-ISSN: 2224-2880

Hongxia Wang, Bin Zheng

Theorem 12 Suppose u, fi, gi, hi € Crq(To X
To,Ry), i = 1,2, a, p, q, 7, m are defined as
in Theorem 9, and M € Ty, N € Ty are two
fixzed numbers. If for (z,y) € ([M,00)T) x
(IN,00)NT), w(z,y) satisfies the following in-
equality:

WP (2,y) < ale,y) + / [ A

+g1(s, t)u” (s, t)|AsAt

+/ / / / ha (&, mu™ (& n)AEAnAsAL

/ / [fa(s, t)ul(s,t) + ga(s, t)u"(s,t)|AsAt

/ / / / ha(€m)u™ (€, M) AEAnAsAt,

(18)

then we have

e y) < (G 20Bs () + Balr )

(2,9) € ([M,00) () T) x ([N,00)(T), (19)

provided that Bs < 1, and —Eg(&?, .) € KT, where

/ / f28t7KP+92(S t)pTKp

AL
Bi(ey) = ale.) + /y N

+a1(s, ) P K5 AsAt+
p

[ e
Yy x t s

O L

AfAn]AsAt (20)

K'» AAnAsAt,
(21)

/ / hi(&,m) KpAﬁAn] s, VK >0,

(22)
By(e,y) = 1+ / e 5, (5,0(8) Bala, )AL, (23)
)
Bi(e,y) = Bi(e.y)

+ / Te 5, W 0(t)Ba(z, t) By (z, 1) AL, (24)
Y
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5 By(s,t)

—|—gg(s,t)TKT;p§3(s,t)]AsAt—I—/OO /OO
p N JM
o0 o0 m
/t/s’”(“)EK
Bo= [ [ n60K

N JM b

—i—gg(s,t)rK?R;(s,t)]AsAt—i—/ /
p N JM

| [ men™x

Proof: Let the right side of (18) be v(z,y), and
[f2(s,t)u(s, 1) + ga(s, t)u

u:/: [ tate)
/ /S ha (& mu™ (&, n) AEAnAsAL.

* /Noo /MOO t
27)

Then

7 B3(&,m)AEARAsAL, (25)

%§4(87 t)

S5 Ba(§, m)AEANAsAL. (26)

"(s,t)|AsAt

1
u(z,y) < vr(z,y),

[M,00) () T) x (IN,00)[|T), (28)

(z,) € (
Fix X € [M,00)(T. Then

v(X,y) = a(X,y) + p

+ / [fi(s,t)ul(s,t) + g1(s, t)u" (s, t)|AsAt

/ / / ha(&mu™(&,m)AEAnAsAL

<a(X,y) + p+

/oo/ [f1(s,t) vp(s t) + g1(s, t)’UP(S ) AsAt

+ /y /X / / ha(&,mvs (€, M) AEARASAL.

(29)
Considering the structure of (29) is similar to
(14), then following in a same manner as the
process of (14)-(17) we can deduce that for y €
[N,00) T,

+

|
/

v(X,y) < p+ Bi(X,y)

oo
+/ e_g, (¥
)

w4 [ e g (o) Ba(X. DA + By(X.)
Yy

o (£)) Ba( X, ) (1 + By (X, 1)) At

E-ISSN: 2224-2880
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[T e o B OB 0AL  (30)

Y

Since X is selected from [M,00) (T arbitrarily,
then in fact (30) holds for Vo € [M,00) (T, that

is

o) <l + [ o5, 0(0) Balw, DAL+

Bi(z,y) + / h e_5,(y,0(t)Ba(x,t) By (x,t) At
Y

= uBs(z,y) + Ba(z,y),

(2,9) € ([M,00) () T) x ([N, 00) () T),

On the other hand, from Lemma 8, (27) and (28)
we obtain

i< /N - /Moo[f2<s,t>v5<s,t> T gals, t)o (5,1)

(31)

/ / ha(€, v (€, N)AEARAsAL

/ / [f2(s,t)( qu%pv(s,t)—}—uK%)
p

+g2(s, t)( K7 o(s, t)+—Kp)]AsAt
/ / / / ha(&m) (K7 (&, m)
7 )AEARASAL

—)\+/OO /Oo[fg(s,t)qKq;pv(s,t)
= v(s,t)] AsAt+/ /
/tw/:ohz@,n)j

Then using (31) in (32) yields

+g2(s, t)

K7 0(&,n)AEARAsAL,  (32)

LA+ / / (Fals 1) 115 [uBs (s, 1) + B
N M D

(s,0)] + g2(s, 1) %K% [1Bs(s,t) + Ba(s, )]} AsAL

T e ™ e

+B4(&, )| AEAnAsAL

B S T =T
—““{/N /M (o) LK Bt
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+gg(s,t)fK%§3(s,t)msAt

S e

Bs(&,m) AEAnAsAt}

o [t

+gQ(s,t)TKT;p§4(s,t)]AsAt—i—/ /
p N JMm

K% By(s, 1)

/ h / " hate, WK Bl m) AtAnAst
t S

= A+ uBs + B, (33)
which is followed by
A+ B6
34
BT R (34)

Combining (28), (31) and (34) we can obtain the
desired inequality (19).

In the proof of Theorem 12, if we let the right-
hand side of (18) be a(x,y) + v(z,y) in the first
statement, then following in a similar process as
in Theorem 12 we obtain another bound of the
function u(z,y), which is shown in the following
theorem.

Theorem 13 Under the conditions of Theorem
12, if for (z,y) € ([M,00)T) x ([N,00)NT),
u(z,y) satisfies (18), then we have
ﬁ + Jl(Mu N)

u(x,y) < {a(x,y)—i— 1—X €_J2(y,00)};,

(2,9) € ([M,00) () T) x ([N, 00) () T),

provided that X\ < 1 and —Ja(z,.) € RY, where

N_/N /M [fg(S,t)%K%e_JQ(t,OO>

+ga(s, t)fKT;fpe_J2 (t,00)]AsAt
p

L e

00) AEANAsAL,

7K p €e— JQ(na

/ / [f2(s,t)( K%a(s,t)—kpp%ql(%)
p—r v
oK)

+9g2(s, t)(EKTa(s, t) +
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- N / h (e m) (K5 (a(€.n) + v(€.m)

+Z%K%)A§Anmsm,

Jl(x,y>:/OO/OO[fl(S)t)SZKqua(S’t)_Fp;q

Kv)+ gl(s,t)(gKT;pa(s,t) n %Kg)]AsAt

T e

PP e AeAnAsAL,
b

»al€,n)

r—p

J2<x,y>=/w[f1<s,y> K 1 gi(s,y) LK

|

+ / / () Agan]As
y S

Finally, we establish a more general inequality
than in Theorems 2.4-2.5. Consider the following
inequality:

WP (3,9) < ale,y) + / [ st

+ / / ha (€, )ut(€, M) AEAR] AsAL

yaa

+ / h / ha(€, myud (€, ) AEARJASAL,  (35)

L(s,t,u(s,t))

where u, a, p, ¢ are defined as in Theorem 9,
M € Ty, N € 1~I'0 are two fixed numbers, L €
(ToxToxRy, Ry ), and 0 < L(s, t,2)—L(s, t,y) <
A(s,t,y)(x —y) for x > y > 0, where A € (T x
To x Ry, R.).

Theorem 14 If for (z,y) € ([M,00)T) x

(IN,00)NT), u(zx,y) satisfies (35), then the fol-
lowing inequality holds.

A+ B

u(wy) < {5 Balasy) + Bale )},
(2.y) € (IM.00) () T) x (IN.o0) () T).  (36)

provided that §5 <1, and —Eg(x

AL
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+ / h / h hQ(g,n)BK%AgAn]AsAt, (37)

B(:J;y—ascy //

[T e UK acanasar, (3)

t—K)

Bua) = [ A PR K

//hlg, Tg5F AeAnAs, VK >0,
(39)
Byle.y) = 1+ / e_5,(u,0(0) Ba(z, DAL, (40)

o e

B5_/ / 51, —K LK By(s, 1)

p

§4($,y) = §1(x,y)

5,0 (1) Ba(x, ) Bz, )AL, (41)

+ /t / h2(£,n)gKTég(i,n)ASAn]AS?;)

1 1-p~
B6—/ / s, t, 7K p)—K 7 By(s,t)

p

q e 5
+ h2(fﬂ7)5K 7 By(§n)ALAn]AsAL.
t s
(43)
Proof: Let the right side of (35) be v(z,y), and

=)

+ / h / " ha(€ (6, ) AEAT AsAL (44)

Then

L(s,t,u(s,t))

u(z,y) < vv (2,y),
(z,y) € ([M,00)[|T) x ([N,00)[]T), (45)
Fix X € [M,00)(T. Then

v(X,y) = a(X,y) +u+/ /

+ / / ha (€, m)ul (€, ) AE AT AsAL

caxpis [ [

E-ISSN: 2224-2880
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+ / h / b€ myt (6 AEAR AsAL. (46)

Combining with Lemma 8 we have

v(X,y) < a(X,y) + o+

o[ 1 1-p -1
/ / L(S,t,*KlTU(S,t)-I-LK%)ASAt

+/yoo/Xoo/too/:ohl(f,n)(ZKTU@W)

—i—]%K%)A{AnAsAt

=a(X,y)+ 0
o[ 1 1-p -1 1
+/ / [L(st, oK Fu(s,t) + LK)
Yy X p
- 1 .
~L(s,t, p—Kp) v L(s,t, P Kv) | AsAL
p

+/y°o/:/t°°/fhﬂfm)(iff‘*v(m)

P9 AcAnAsAL
p

<a(X,y) + a+
/OO/OO[A(st P=lphd ) K7 u(s,t)

o by [ [

/ / hi(g, 77) K5 AfAn] (X, t)AsAt

////hlgn—KpAfAnAsAt

< a(X y)-i—lH-

K " AEADAS|(X, ) At

_|_
—
8
8

/ hlfnp T AeARAsAL
y X Jt p

— A+ Bi(X.y) + / Bo(X, t)o(X, )AL, (47)
We notice the structure of (47) is similar to (15).

So following in a same manner as (15)-(17) we
obtain

o) <AL+ [ e, 0(0)Bale, A+
Yy
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Bi(z,y) + / h e_5,(y,0(t)) Ba(, t) By (x, t) At
Yy

= ﬁg?)('r?y) + _/8\4($,y),

(2,9) € ([M,00) () T) x ([N,00)(T), (48)
On the other hand, from Lemma 8, (44) and (45)

we have
,u</ / s,t,vp
" / / ha(€, )% (€, ) AEAn] AsAt
t S
g/ / [L(s,t,lK%v(s,t)-i-EK%)-f-
N JM p b

/t h / h na(€ ) (LK T v(em)

+;K%)A5Anmsm
-Jo o

—L(s,t, 7Kp) +L(s,t,p;K%)]AsAt
b
s [ haem S o)
N JMm Jt s p
P Sy AcApAsAL
p

o [ -1 1.1 1-p
S/ / [A(s,t, LK) K (s, 1)

N JM b p

(s,t, fK P v(s t)+7KP)
p

1
Y L(s,t, pTKi ) AsAt

L e e

+;K%)A§AnAsAt
=+ / / s, t, 7K )pKTv(s,t)
/ / a(m) LK 0(€ ) AeAT|ASAL
(49)

where ) is defined in (37). Then using (48) in (49)
yields

~ 1 24
n< A+ / / AstiKp) K
p

[7iBs(s,t) + By(s, t)] AsAt
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L e

[iB3(€,m) + Ba(€,n)] AEAnAsAt

:X+ﬁ{/ / A(s,t,p;lK%)lKl%Eg(s,t)
N JM p p
e o0 q a-p
+/ / h?(gan)iK P
1-p ~
/ / st —Kp) K52 Bus, 1)
p

q, . =P =
+/t / ha(6n) K5 Ba(E mAEAT]As

Bs(€,m)AEAnAsAt}

= X+ fiBs + By, (50)
which is followed by
/)\\ + Eﬁ
1—Bs

B< (51)
Combining (45), (48) and (51) we can obtain the
desired result.

Remark 15 In [31-32], the authors researched
some Gronwall-Bellman type inequalities in two
independent variables on time scales. We note
that the presented inequalities in (8), (18) and
(85) established here are of different forms from
the main results in [31-32].

3 Some Applications

In this section, we present some applications
for the results established above. New explicit
bounds for solutions for certain dynamic equa-
tions are derived in the first two examples,
while the quantitative property of solutions is
concerned in the final example.

Example 1: Consider the following dynamic
differential equation

(WP (2, 9)) g = F(z,y,u(z,y),

//W(f,n,U(E,n))AfAn), (z,y) € Tox Ty,
Yy T

52
with the initial condition uf"(oo,g,/))yA ( :)
b2 (y), uP(z,00) = a(z), where u € Cyq(To x T,
R), a € Cuq(To,R), b € Cw(To,R), b
is delta dif ferential, and b(co) = 0,
k e Cra(To x 'ﬁ‘g,R+), p > 0 is a constant,
F e (To x To x R2,R), W € (To x Tg x R, R).
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Theorem 16 Suppose u(z,y) is a solution of
(52), |a(x) + b(y)| < k(z,y), and |F(z,y,u,v)| <

f@y)|ul? + Jv], [W(E n,u)| <
h(&,n)|ul™, where f, h, q, m are defined as in
Theorem 9. Then

)| < Brle) + [ emlinolo)
Yy

B, t) By (x, ) Al

where

Bi(z,y) = k(z,y) —I—/OO/OO[f(s t)l%l(p

(z,y) € To x Ty,  (53)

+ / / h(f,n)]%K%AgAn]AsAt,VK >0,
t S

and Bs(z,y) is defined as in Theorem 9 (with
g(z,y) =0).

Proof: The equivalent integral form of (52) can
be denoted by

ey o)+ + [ [ Flstatsn,
Y T

l[m/mw«ammamﬂxAmAﬂu. (54)
Then

IW@wHSM%w+/m/wW@mM&ﬁ

/too /:O W(&,n, u(€ n)ALAnN)|AsAt
<k(z,y)+ /yoo /:O[f(s,t)\u(s’t”q

-Hl L W&, ul€, ) AEAD] AsAL

sk@wwyéméwuwwW@ww

+[mlmmamm@mwwammﬂa (55)

and a suitable application of Theorem 9 to (55)
yields the desired inequality (53).

Theorem 17 Under the conditions of Theorem
16, furthermore, we have

1 ~

|u($7 y)‘ < [Bl((L‘, y)6*32 (yv OO)]I’, (1:7 y) € TOXTOa
(56)

where By, Bs are defined as in Theorem 16.
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Proof: The desired inequality can be obtained
by an application of Theorem 10 to (55).

Example 2: Consider the following dynamic
integral equation

e =C+ [ [ At
Y T

/ / Wi(&,m, u(€, n)ALAn) AsAt

//ngtust)

| [ wateonutemaanssar
(x,y) € ([M,oo)ﬂT) %

where u € Cpq(To % 'fﬁ‘o,R), p > 0 is a constant,
C = uP(c0,0), M € Ty, N € T, are two fixed
numbers, F; € (TO X ']TO X R2, R), W; € (TO X ']TO X
R,R), i =1,2.

(IN,o0) (), (57)

Theorem 18 Suppose wu(x,y) is a solution
of (57), and |Fi(z,y,u,v)] < L(z,y,|ul) +
|U’7 |Wl(£7777u)’ < hz(fﬂ?)wq, i = 1,2, where
L, h;, 1 =1,2, q are defined as in Theorem 14.
Then the following inequality holds.

//\\—l—éﬁ
1- Bs

Juz,y)| < {| 1Bs(,y) + Ba(w,y)}7,

(2,y) € (M, 00) () T) x ([

provided that Bs < 1, where /):, Ez(x,y), Eg(x,
y), Ba(z,y), Bs, Bg are defined the same as in
Theorem 14, and

Buey) =101+ [ [Tl k)

N,00)(\T), (58)

/ / hlfn—KpAgAn]AsAt.

Proof: From (57) we have

hﬂ%MSKﬂ+/ /|ﬂ@mMam
Y T

/ /’qum (&, 1) AEAD) | AsAL

// | Fa(s, t,u(s,t),
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/ / Wa(E, 1, u(€,m) AEAR)| AsAt

<o [

+ / / Wa (6, (€. ) AEAR[| AsAL

N

1] / / Wa(€.n, u(€, n) AEAn[| AsAt

o[ [

4 / / ha (€, ) (€, m) " AEA] AsAt

A

+ / / ha (€, n)|u(&, n)|"AEAT AsA.

So by use of Theorem 14 we can obtain the
desired inequality (58).

L(s,t,|u(s,t])
L(s,t, |u(s,t])
L(s,t, |u(s,t|)

L(s,t, |u(s,t|)

Example 3: Consider the following dynamic
integral equation

u(w,y) = C + /yoo /; Fls,tu(s, 1),

/ [ wen e seanssat, (59

where u € C,q(Ty x ’E‘O,R), C = uP(o0,0), F €
(To x Tg x R2,R), W € (Tg x Tg x R,R).

Theorem 19 Assume |F(s,t,ui,v1) — F(s,t,us,
’Ug)’ < f(svt)‘ul - u2| + ‘Ul - ’U2|, ’W(‘g?tvul) -
W (s, t,u2)| < h(s,t)|uyr — ua|, where f, h are de-
fined as in Theorem 9, and furthermore, assume
T1(z) > xo, T2(y) > yo, then Eq. (62) has at most
one solution.

Proof: Suppose ui(x,y), us(x,y) are two solu-
tions of (59). Then we have

|u1(l‘y)—u2zy|</ |

/t h / T WE m, un (€ ) AEAR) — (st us(s, 1)

F(s,t,ui(s,t)

/t h / W (e us(E.m) AEA) AsAl]

E-ISSN: 2224-2880

976

Hongxia Wang, Bin Zheng

g/yoo/;F(s,t,ul(s,t)/oo/OOW(&nvul(f?n))

AgA??) - Sat7u2 S, t / / W f 7, U2 g T}))
AEAN)|AsAt

/ / f(s,t)ui(s,t) —ua(s, t)|AsAt

L e

W (&, m,uz(&,m))[ASAnAsAt

/ / F(s,8)ua (s, t) — ua(s, t)|AsAt+/oo

/// (& m)|ui(€,m) — u2 (€, )| AEAnAsAL,

(60)
A suitable application of Theorem 11 yields

lui(z,y) — uz(z,y)] < O, that is, wi(z,y) =
uz(x,y), and the proof is complete.

4 Conclusions

We have established some new Gronwall-Bellman-
type dynamic inequalities in two independent
variables containing integration on infinite inter-
vals on time scales. As applications, we apply the
results established to research boundedness and
quantitative property for the solutions to some
certain dynamic equations on time scales. In fact,
the motive to establish Gronwall-Bellman type in-
equalities with new forms mostly comes from the
research for the properties of solutions to various
differential equations, difference equations, and
dynamic equations on time scales. It is worth to
note that in order to fulfill analysis for the prop-
erties of solutions to some fractional differential
equations, it is necessary to investigate how to es-
tablish new Gronwall-Bellman type fractional in-
equalities, which are supposed to further research.
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